IV CONVEGNO NAZIONALE Controllo ambientale degli agenti fisici: nuove prospettive e problematiche emergenti Modelli per la valutazione delle grandezze dosimetriche e la verifica dei limiti relativi a campi elettromagnetici a RF

Luca CATARINUCCI, Luciano TARRICONE

DII, University of Lecce, Lecce, Italy luca.catarinucci@unile.it

Vercelli, 24-27 Marzo 2009

UNIVERSITÀ degli STUDI di LECCE

Introduction RF & MW Dosimetry Numerical Dosimetry Ad-Hoc Simulation Example Conclusions

Rationale: EM Exposure

Human interaction with EM fields is <u>frequent</u> in a large range of frequencies! Ex: wireless devices (Wi-Fi, UMTS, Blue-Tooth, RBAs, etc) in RF and MW range, and high-power transmission line and home-appliances at lower frequencies.

Rationale: EM Exposure

EU Directive 2008/46/CE establishes that "Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with Directive 2004/40/CE no later than <u>30 April 2012</u>..... "

Directive 2004/40/CE of the European Parliament and of the Council establishes minimum health and safety requirements to protect workers against the risks arising from exposure to electromagnetic fields.

The exposure limit values must not be exceeded and they are to be considered as an integral part of a comprehensive system to limit the exposure of workers to electromagnetic fields. Indeed the directive develops in some detail measures and provisions relating to the responsibility of employers.....

For this directive which concerns workers exposed to electromagnetic fields and not patients nor the general public, **only known short-term adverse effects** in the human body are considered.

Dosimetry

In order to experimentally corroborate any interaction mechanism, the preliminary step is the evaluation of the electric and magnetic field intensities, and/or electromagnetic power density in situ

Dosimetry

Scientific discipline for the measurement or the determination by calculations of the internal electric field strength or induced current density, or of the specific absorption rate (SAR) distributions, in humans or animals exposed to electromagnetic fields and waves.

Biological effects

Setting of safety standards

Compliance of devices

Dosimetric Parameters

Basic dosimetric parameters are the current density J [A/m] and the specific absorption rate (SAR) [W/kg].

SAR is the dosimetric measure that has been widely adopted at frequencies above about 100 kHz.

$$SAR = \frac{\delta}{\delta t} \left(\frac{\delta W}{\delta m} \right)$$
$$SAR = \frac{\sigma |E^{2}|}{2\rho} = c \frac{\Delta T}{\Delta t}$$

In the context of RF and MW exposure these alternative forms are often used, allowing the SAR evaluation from either electric field or temperature measurement.

SAR

SAR is defined as the time derivation of the incremental energy absorbed by, or dissipated in, an incremental mass contained in a volume element of a given density.

SAR

Three different SAR are often used:

Whole Body SAR, 10g-SAR

and 1g-SAR

- SAR values depend on the shape of the volume containing reference mass. Standardization is needed!

- The smaller is the mass, the better is the estimation! A large volume tend to artificially smooth out the SAR distribution!

Theoretical Dosimetry

An analytical model of the exposure problem is performed. Complicated cases cannot be modeled. Useful as "test case generator" for experimental and numerical dosimetry validation,

and for a phenomenological first investigation of the problem.

Experimental Dosimetry - Need of adequate experimental set-up and often high operating costs - Real sources can be used! - Use of simplified human body models (filled with a synthetic liquid material) or animals; difficult correlation with SAR in real humans. field probe robot phantom Simplified Mobile antenna phantom phone

Numerical Dosimetry

The human-antenna interaction problem is solved in full-wave form by numerically modeling source and human!

Complementary properties: High Resolution Heterogeneous numerical body models are available, but the numerical modeling of radiating sources is difficult because of its size and complexity.

A high quality numerical body model

Numerical Dosimetry needs:

A robust and versatile EM solver

Appropriate testing protocols

Numerical Phantoms

Many different human body models are available, with different shape and resolution.

They have been obtained by using a combination of Magnetic Resonance Images, photographic scans and Computer Tomography Images!

Each point of the numerical phantom is associated to the correspondent tissue..

Yale-Phantom: resolution 4mm, 128x128x243 voxels,

Numerical Phantoms

Each tissue must be associated to its permittivity and conductivity values... which are frequency dependent!

Tissue Dependence on Frequency:Low Frequency:εrlarge, σ smallHigh Frequency:εrsmall, σ large

	835	MHz	1900	MHz		835 2	MHz	1900	MHz
Tissue	ε _r	σ (S/m)	ε _r	σ (S/m)	Tissue	ε _r	σ (S/m)	ε _r	σ (s/m)
bone	17.4	0.25	16.40	0.45	nerve	33.40	0.60	32.05	0.90
muscle	51.76	1.11	49.41	1.64	blood	55.50	1.86	54.20	2.27
fat	9.99	0.17	9.38	0.26	CSF	78.10	1.97	77.30	2.55
cartilage	40.69	0.82	38.10	1.28	eye humour	67.90	1.68	67.15	2.14
brain & glands	45.26	0.92	43.22	1.29	sclera	54.90	1.17	52.56	1.73
skin	35.40	0.63	37.21	1.25	lens	36.59	0.51	42.02	1.15
* Provid	led by C	amelia (Gabriel			•	• 		

EM Solvers: FDTD

Among the available EM solvers, MoM, FEM & FDTD methods are the most adopted for dosimetric purposes. When heterogeneous models of human bodies with complicated shapes and inner dielectric characterization are modeled, FDTD emerges as the method of choice in many studies, thanks to its simplicity, flexibility and compatibility with the problem geometry.

FDTD algorithm [Yee 1966] is based on time and space discretization of Maxwells's curl equations.

The space and time derivatives are approximated by using central finite discretization, resulting in secondorder accurate expressions.

FDTD uses a leap frog method to solve Maxwell's equations. At each time step, EM fields are updated.

Real Simulation by using FDTD....

FDTD & SAR Evaluation

Average trunk SAR 0.05 W/Kg

Radiated Power 32W

Max 1g-SAR: 0.46 W/Kg Max 10g-SAR: 0.35 W/Kg ICNIRP standard for workers

whole body average SAR : <u>0.4 W/Kg;</u>

10g SAR in head or trunk point: <u>10 W/Kg;</u>

10g SAR in limb point: <u>20 W/Kg</u>.

Dosimetry Application 1: SAR evaluation in different numerical phantoms

Many different numerical phantoms have been exposed to the field emitted by a 900 MHz source, in order to answer the different questions: how much is it the impact of the numerical model on the dosimetric study? How much is it the impact of the use of homogeneous numerical models?

A very complex parallel FDTD algorithm has been used and EM field and SAR have been evaluated in each phantom points.

It will be shown how difficult is the result interpretation even by using accurate tools.

Numerical Phantoms

b

Yale Phantom: voxel size 4mm³.

No limbs are modeled

Brooks Phantom: voxel size 3mm³.

Whole body phantom The 2 phantoms have been simplified by assuming a homogeneous inner structure. Some new phantoms have been generated considering the YP and BP averaged values.

	BP	BHP	BH _Y P	BH _B P	YP	YHP	YH _Y P	YH _B P			
Heter./Homog.	Het.	Hom.	Hom.	Hom.	Het.	Hom.	Hom.	Hom.			
permittivity ɛ	/	50	46.33	34.32	/	50	46.33	34.32			
conductivity σ [S/m]	/	0.92	0.73	0.63	/	0.92	0.73	0.63			

YH_BP = Yale-shape Homogeneous-Brooks Phantom

Heterogeneous Vs Homogeneous

E-Field in Yale Heterogeneous Phantom (YP)

E-Field in Yale Homogeneous Phantom

(YH1P)

Heterogeneous Vs Homogeneous

Heterogeneous Vs Homogeneous

1g-SAR Levels

1g SAR level: YHyP a) and YP b) in the brain region.

Differences are evident!

Phantoms Modeled with Different Shape and Dielectric Characterization

	K730	678 exposu	ıre: 1-	g SAF	R and 1	0-g	SA	R pea	k valı	ies [W/	′Kg]	
Dist	type	YP	YH	_Y P	YHB	P		BP	I	BH _Y P	BI	I _B P
20	1g	30.3246	29.5	250	27.87.	30	1	8.4290	27	7.6260	25.0	7077
cm	10g	15.3094	16.6	297	15.210	04	1	1.8857	18	3.8416	17.2	2059
30	1g	12.6115	11.7	294	11.450	54	1	3.3806	5 19	9.5851	17.8	8272
cm	10g	6.3243	6.64	-11	6.249	94	{	8.6443	13	3.4448	(12.0	0284
40	1g	10.6837	9.98	347	9619	8	(5.1333	9	.6302	9.1	622
cm	10g	5.3198	5.62	239	5.241	9	2	4.1630	7	.1555	6.5	020
50	1g	5.3187	4.87	66	4.771	1	2	4.7905	7	.0089	6.7	971
cm	10g	2.6331	2.75	527	2.595	5		3.1065	5	.2943	4.7	935
			BP	BHP	BH _v P	BH	₂ P	YP	YHP	YH _v P	YH _R P	1
	Hete	er./Homog.	Het.	Hom.	Hom.	Hor	n.	Het.	Hom.	Hom.	Hom.	
	per	mittivity e	/	50	46.33	34.3	32	/	50	46.33	34.32	
	conductivity σ [S/m]		/	0.92	0.73	0.6	3	/	0.92	0.73	0.63	

K730678 exposure: 1-g SAR and 10-g SAR peak values [W/Kg]												Kg]		
Dist	type		YP	YH	YP	YH _B P			BP	BH	_Y P	I	3H _B	P
20	1g	30	.3246	29.52	250	27.873() (18	.4290	27.6	260	2.	5.70	77
cm	10g	15	.3094	16.62	297	15.2104	4	11	.8857	18.8	416	11	7.20	59
30	1g	12	.6115	11.72	294	11.4564	4	13	.3806	19.5	851	17	7.82	72
cm	10g	6.	3243	6.64	11	6.2494	-	8.	6443	13.4	448	12	2.02	84
40	1g	10	.6837	9.98	47	9.6198		6.	1333	9.63	302	9	.162	22
cm	10g	5.	3198	5.62	39	5.2419	•	4.	1630	7.15	555	6	.502	20
50	1g	5.	3187	4.87	66	4.7711		4.	7905	7.00)89	6	797	71
cm	10g	2.	6331	2.75	27	2.5955		3.	1065	5.29	943	4	.793	35
			BP	BHP	BH _Y P	BH _B P	Ŋ	Υ P	YHP	YH _Y P	YH _B P	·]		
Hete	r./Homog	g.	Het.	Hom.	Hom.	Hom.	Η	et.	Hom.	Hom.	Hom.			
peri	mittivity	3	/	50	46.33	34.32		/	50	46.33	34.32			
conduct	tivity σ [S	S/m]	/	0.92	0.73	0.63		/	0.92	0.73	0.63			

When comparing the two heterogeneous phantoms, differences of up to 40% are observed!!!

When comparing the heterogeneous phantom with its companion homogeneous versions, the difference between YP and its homogeneous version is smaller than the difference between BP and BH_BP .

	K730	678	exposu	re: 1-	g SAI	R and 10)-g \$	SAF	R peak	values	[W/F	Kg]	
Dist	type		YP	YH	_Y P	YH _B F			BP	BH	YP	B	H _B P
20	1g	30	.3246	29.52	250	27.873	0	18	.4290	27.6	260	25.	7077
cm	10g	15	.3094	16.62	297	15.210	4	11	.8857	18.8	416	17.	2059
30	1g	12	.6115	11.72	294	11.456	4	13	.3806	19.5	851	17	8272
cm	10g	6.	3243	6.64	-11	6.2494	ŧ	8.	6443	13.4	448	12.	0284
40	1g	10	.6837	9.98	47	9.6198	3	б.	1333	9.63	302	9.1	1622
cm	10g	5.	3198	5.62	39	5.2419)	4.	1630	7.15	555	6.:	5020
50	1g	5.	3187	4.87	66	4.7711		4.	7905	7.00)89	6.′	7971
cm	10g	2.	6331	2.75	27	2.5955	5	3.	1065	5.29	943	4.′	7935
			BP	BHP	BH _Y I	P BH _B P	Y	Έ	YHP	YH _Y P	YH _B P		
Hete	r./Homog	g.	Het.	Hom.	Hom	. Hom.	H	et.	Hom.	Hom.	Hom.		
per	mittivity	3	/	50	46.33	3 34.32	L	/	50	46.33	34.32		
conduc	tivity σ [S	S/m]	/	0.92	0.73	0.63	L	/	0.92	0.73	0.63		

<u>Effects of the phantom shape</u>: by comparing homogeneous phantoms with different shape but similar dielectric characterization, the maximum difference is up to 50%!!

K730678 exposure: 1-g SAR and 10-g SAR peak values [W/Kg]														
Dist	type		YP	YH	YP	YH _B P			BP	BH	YP	В	BH _B P	
20	1g	30	.3246	29.52	250	27.873	0	18	.4290	27.6	260	25	5.7077	
cm	10g	15	.3094	16.62	297	15.210	4	11	.8857	18.84	416	17	7.2059	
30	1g	12	.6115	11.72	294	11.456	4	13	.3806	19.5	851	17	7.8272	
cm	10g	6.	3243	6.64	-11	6.2494	ŀ	8.	6443	13.4	448	12	2.0284	
40	1g	10	.6837	9.98	47	9 61 98	3	6.	1333	9.63	.02	9	1622	
cm	10g	5.	3198	5.62	.39	5.2419		4.	1630	7.15	55	6.	.5020	
50	1g	5.	3187	4.87	66	4.7711		4.	7905	7.00	89	6.	.7971	
cm	10g	2.	6331	2.75	27	2.5955	5	3.	1065	5.29	43	4	.7935	
			BP	BHP	BH _Y I	P BH _B P	Ŋ	ΥP	YHP	YH _Y P	YH _B P			
Hete	r./Homo	g.	Het.	Hom.	Hom	. Hom	H	let.	Hom.	Hom.	Hom.			
per	mittivity	3	/	50	46.33	3 34.32		/	50	46.33	34.32			
conduc	tivity σ [\$	S/m]	/	0.92	0.73	0.63		/	0.92	0.73	0.63			

Effects of the phantom inner characterization: by comparing homogeneous phantoms with the same shape but different characterization $(YH_{Y}P \text{ with } YH_{B}P \text{ and } BH_{Y}P \text{ with } BH_{B}P)$, the difference in the permittivity and conductivity values (up to 30% for permittivity, up to 13% for the conductivity)

causes small differences on the peak SAR estimation (in the range 2%-10%).

- The differences on the SAR estimation by varying the phantom shape and/or characterization are quite impressive!
- Peak SAR values are strongly influenced by the phantom shape above all because of the proximity of the peak to the external human surface.

Dosimetry Application 2: SAR algorithm differences

Different algorithms for the numerical evaluation of the SAR can be implemented and used.

The algorithms implemented in commercial tools are not well known.

Also in this case, it will be show how difficult is the result interpretation.

Does the shape of the volume containing the reference mass impact the SAR value?

Is the discretization step influent?

For points close to the surface the volume shape is modified. Which is the best algorithm in that sense?

Commonly Adopted Algorithms

Fixed-Cube (FC)

IEEE C95.3 (C95.3)

Fixed-Adj.-Cube (FAC)

Adaptive-Cube (AC)

Common Algorithms Vs Requirements

	Aver. Mass Toler. < 5%	Independence on Ref. Syst.	Computability everywhere	Overall Accuracy
FC	NO 🛞	NO 🛞	NO 88	8888
FAC	YES 🙂	NO 🛞	NO 88	88
AC	YES 🙂	NO 😄	YES 🙂	
C 95.3	NO 🛞	NO 🛞	YES 😐	8888

-None of the adopted algorithms satisfies the minimum requirements -They do not contravene any of the indications of international guidelines -Cubical shapes give SAR values dependent on the reference system -Contributions are unbalanced with respect to the evaluation points

New Spherical Algorithms

Spherical shape <u>does NATURALLY select</u> the most close cells to the evaluation point.

The Ideal Circle (sphere in 3D) is the circle centered in the evaluation point containing exactly rm. It classifies the cells as Internal, External and Peripheral. Internal cells are the "core" of the SAR evaluation. The contribution of peripheral cells should be proportional to the intersected area (volume). The kind of used approximation generates different algorithms.

Spherical Algorithms

2b

Graded Peripheral Cell (GPC)

Graded Peripheral Vertexes

AIR

2c

Onion Skin (OS)

New Algorithms Vs Requirements

	Aver. Mass Toler. < 5%	Independence on Ref. Syst.	Computability everywhere	Overall Accuracy
FC	NO 😣	NO 😣	NO 88	8888
FAC	YES 🙂	NO 😕	NO 88	88
AC	YES 😳	NO 😐	YES 😳	(
C95.3	NO 😕	NO 😕	YES 😐	8888
OS	YES 🙂	YES 😳	YES 🙂	\odot
GPC	YES 😳	YES © ©	YES 🙂	000
GPV1	YES 😳	YES © ©	YES 🙂	$\odot \odot \odot \odot \odot$
GPV3	YES 🙂	YES © ©	YES 🙂	0000

Results: Peak SAR in test-cases

1) Unpredictable behaviour of the C95.3 algorithm: underestimation & wrong averaging mass.

2) Good agreement among GPC, GPV and GPV3 at various discretization steps.

3) Better attitude of spherical algorithms to deal with the problem: higher discrepancy among results obtained with cubical algorithms when the reference system is varied.

Exposure to uniform radio-frequency electromagnetic fields (RF-EM) can be assessed simply by measuring the electric and magnetic field strength or power density in one point occupied by the body (body removed) and comparing the results to the reference levels (ICNIRP).

Most exposure situations occur in the close vicinity of the source where the fields are more or less nonuniform. In this case, the maximal field strength may considerably exceed the reference levels for the external fields without exceeding the basic restrictions expressed in terms SAR.

Exposure characteristics	Frequency range	Current density for head and trunk (mA m ⁻²) (rms)	Whole-body average SAR (W kg ⁻¹)	Localized SAR (head and trunk) (W kg ⁻¹)	Localized SAR (limbs) (W kg ⁻¹)
Occupational	up to 1 Hz	40		_	_
exposure	1-4 Hz	40/f	_	—	—
-	4 Hz–1 kHz	10	_	_	_
	1–100 kHz	<i>f</i> /100	_	—	—
	100 kHz–10 MHz	<i>f</i> /100	0.4	10	20
	10 MHz-10 GHz	_	0.4	10	20
General public	up to 1 Hz	8	—	—	—
exposure	1–4 Hz	8/f	_	—	—
-	4 Hz–1 kHz	2	_	—	—
	1–100 kHz	<i>f</i> /500	_	—	—
	100 kHz–10 MHz	<i>f</i> /500	0.08	2	4
	10 MHz–10 GHz	—	0.08	2	4

Table 6. Reference levels for occupational exposure to time-varying electric and magnetic fields (unperturbed rms values).^a

Frequency range	E-field strength (V m ⁻¹)	H-field strength (A m ⁻¹)	B-field (µT)	Equivalent plane wave power density S_{eq} (W m ⁻²)
up to 1 Hz	_	1.63×10^{5}	2×10^5	_
1-8 Hz	20,000	$1.63 \times 10^{5}/f^{2}$	$2 \times 10^{5}/f^{2}$	—
8–25 Hz	20,000	$2 \times 10^4 / f$	$2.5 \times 10^4/f$	
0.025-0.82 kHz	500/f	20/f	25/f	—
0.82–65 kHz	610	24.4	30.7	—
0.065–1 MHz	610	1.6/ <i>f</i>	2.0/f	—
1–10 MHz	610/ <i>f</i>	1.6/ <i>f</i>	2.0/f	—
10–400 MHz	61	0.16	0.2	10
400–2,000 MHz	$3f^{1/2}$	$0.008 f^{1/2}$	$0.01 f^{1/2}$	<i>f</i> /40
2-300 GHz	137	0.36	0.45	50
@900 MHz Reference Leve			Electr	ic Field: 41 V/m
Basic Restrictio	on:	Whole Boo Localized	ly SAR: 0.4 W/Kg SAR : 10 W/Kg	

ny

•	Distance:	50 cm	Distance [m]	Electric Fie	ld [V/m]	
			0.5	25.3		
ω			1.0	13.7		
50 -	00 50 00	50 50	1.5	10.9		
50 -			2.0	6.3		
100		<u></u>				
150			SAR		SAR	
200		100	6 6 6 6 8 6	ALG	SAR 1g [W/Kg]	SAR 10g [W/Kg]
2		- 8				
50		5 5 		<i>C</i> 95.3	0.133	0.059
300		70 90_		Ad.cube	0.169	0.062
350		8- 		O. Skin	0.175	0.062

CONCLUSIONS

Numerical dosimetry has been used in order to solve three different and complicated dosimetric problems:

-Exposure of different numerical phantom to EM fields -Numerical evaluation of SAR by using different algorithms -Comparison between Basic restriction and Reference levels

In all cases, the interpretation of the results is not trivial and requires adequate EM skill and competences. EU Directive should contemplate the use of simplified models suitable for non-expert Employers.