External Costs of Waste Treatment: comparison Landfill ↔ **Incineration**

Ari RablEcole des Mines de Paris

Methodology

1) Life Cycle Assessment (LCA)

to account for upstream and downstream impacts

2) Site specific impact pathway analysis

(for each pollutant: emission→dispersion→impact→cost)

based on

ExternE = "External Costs of Energy" funded by European Commission DG Research, since 1991 >100 scientists in all countries of EUMajor publications **1995**, **1998**, **2000, 2004 www.externe.info**

Results extremely dependent on assumptions on energy recovery \Rightarrow Consider several scenarios

Impact Pathway Analysis

to calculate damage of a pollutant emitted by a source

Impacts are summed over entire region that is affected (Europe) and all damage types that can be quantified: •health

•loss of agricultural production

•damage to buildings and materials

Multiply by kg/t_{waste} to get Θ t_{waste}

DOSE

3

Methods and Priority Impacts

$\mathbf{1)~\mathbf{CO}_{2}}$ and \mathbf{CH}_{4}

assume **19 Euro/tCO 2**

2) Air pollutants:

Assume emissions = limit values of EC Directive real emissions probably lower (but difficult to get data) NO ^x, SO 2, PM10, VOC (O 3 from VOC and NO x) *"classic air pollutants"* impacts on **health**, buildings, crops Dioxins and toxic metals (As, Cd, Cr, Hg, Ni, Pb) *"trace pollutants"*

3) Leachates from landfill, residues from incineration

4) Amenity impacts

meta-analysis of literature (loss of property values)

Key Assumptions

Local + regional dispersion models

Linear dose-response functions for health (no threshold):

Mostly $PM_{2.5}$, $PM₁₀$, $O₃$ A few for SO_2 and CO None for $NO₂$ Sulfates are treated like PM $_{10}$, Nitrates like $0.5 \times \mathrm{PM}_{10}$ also As, Cd, Cr, Hg, Ni and Pb

Mortality in terms of LLE (loss of life expectancy) rather than number of deaths

Monetary valuation based on Willingness-to-pay (**WTP**) to avoid a loss: **Value of a Life Year** (VOLY) due to air pollution = **50,000 € Cancers 2M€ cancer**, based on $VSL = 1$ M€ (VSL $=$ "Value of Statistical Life" $=$ WTP to avoid risk of an anonymous premature death; *typical values used in EU and USA 1-5 M€)*

 ϵ /kg

1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

Damage Cost per kg of Pollutant, and uncertainty (error bars and probability distribution) $h =$ stack height

These are values for France, but they are fairly typical for central Europe.

For greenhouse gases $0.019 \text{ Ekg}_{CO2eq}$

Impact of Leachates

Difficulties of quantification:

Long life time of pollutants in soil (unlimited for toxic metals) Very **complex pathways** (diffusion and chemistry in soil) **Extremely site dependent** (how to obtain typical damage costs for policy applications?) **Depends on future management** of site

Alternative approach:

Look at measured data for concentration of pollutants in leachate, Estimate maximal leachate production rate,

Consider an **extreme scenario** where **all the leachate goes into the water supply**, Compare pollutant concentration in water with limit values of Water Quality Directive,

Result: concentrations below limit values

⇒ **Not a significant problem**

if EC Directives are respected (attack other sources of these pollutants before worrying about leachates!)

comparison Incineration ↔ **Landfill Variation with energy recovery assumptions**

For energy recovery: E=electricity, H=heat, g=gas, o=oil, c=coal

Incineration, some detailed results

•If electricity displaces nuclear (France), like no energy recovery.

•Transport based on hypothetical 100 km.

Landfill, some detailed results

•If electricity displaces nuclear (France), like no energy recovery. •Transport based on hypothetical 100 km.

Methodological issues

•How large is **cost of global warming**? (we have assumed 19 ϵ_{CO2eq} , but uncertain and controversial)

main impact of landfill

•**Biomass CO 2** – include or exclude in the calculation? One should count each source and sink when and where it occurs!

•How large are the **CH 4 emissions** (taking into account oxidation)?

•What fraction of landfill CH $_4$ can be captured?

•Transferability of **incineration amenity** – very site-specific

Conclusions

- •**Environmental costs are significant** - dominated by CO_2 and CH_4 , then air pollution, then amenity
- \bullet **Trace air pollutants**: low for toxic metals, negligible for dioxins
- \bullet Strong **variation across countries and sites** – differences in damage cost per kg of pollutant, differences in amenity cost, (differences in emissions?)
- \bullet **Strong variation with energy recovery** – especially with incinerators (can potentially change the attractiveness over landfill). Benefit greatest if constant heat load.
- \bullet • Assumed value for CO_2 and CH_4 can change the overall comparison incinerators over landfill (value is **controversial and uncertain**)
- • Impact of **leachates** from landfill or from incineration residues negligible (if EC Directives are respected)
- \bullet Impacts due to **transport** (if < 100 km) very small
- •• **CH₄ collection and energy recovery** can significantly reduce environmental costs of landfill