Coexistence of weather radars and telecommunication systems

Mattia Vaccarono, V. Chandrasekar, Renzo Bechini, Roberto Cremonini

2nd URSI Atlantic Radio Science Meeting
Gran Canaria 31 May 2018
Summary

1. Introduction
2. RFIs at C-band
 1. Arpa Piemonte Bric della Croce radar
 2. RFI identification
 3. Time series analysis
3. RFIs at X-band
 1. Arpa Piemonte mobile radar
 2. RFI identification
 3. LTE features
 4. Time series analysis
4. DFW X-band radar network
5. Conclusions
Introduction

RFIs at C-band

- In-band emissions from HIPERLAN systems (*HI*gh *PE*rformance *Ra*dio *LAN*)
- Towers location available from Arpa database of electromagnetic sources
- In-field measurements to retrieve RFIs SSID.
- Method to identify the RFI sources. Check of standards requirements compliance.
- Time series analysis for RFI removal.

RFIs at X-band

- Likely spurious emissions from 1.8GHz mobile communication systems
 - RFIs day-night pattern → Base Station radiated power
 - Towers location available from Arpa database of electromagnetic sources
 - Time series analysis show RFI duration comparable to LTE symbol duration
Introduction

- Frequency allocation defined in the International Telecommunication Union (ITU) radio regulations (latest version 2016).
- C-band weather radars widely used in Italy and Europe. These radars share the frequency spectrum with RLAN and WLAN, especially HIPERLAN systems.
- The 5GHz RLAN were authorized in the 5150-5350MHz and 5470-5725MHz band after World Radiocommunication Conference 2003 (WRC-03).
- Dynamic Frequency Selection (DFS) is a mandatory feature for WLAN/HIPERLAN systems to mitigate interferences with weather radars.

- No civil communication allowed in the 9300-9500MHz band.
- Spurious emissions defined from standards (e.g. 3GPP – LTE, Table 9.2.1.2.1-1)
Growth of HIPERLAN towers transmitting in Piemonte region (from Arpa database).

May 2018: about 1100 towers
C-band radar -0.1° elevation

PPI acquired the 9 December 2010 at -0.1° elevation from Bric della Croce radar (TO). The same radar scan, acquired after four year is reported in figure b. It is remarkable the interference increase.
PPI acquired the 9 December 2010 4.4° elevation from Bric della Croce radar (TO). The same radar scan, acquired after four year is reported in figure b. It is remarkable the interference increase.
C-band RFI Identification

Location of towers transmitting in the C-band (green points) and Bric della Croce radar (violet pentagon).

The figure shows the towers selected by the interference zones model:
1. Antennas pointing to the radar
2. Tower location is visible from the radar.

Amount of selected towers: 256

Focus on this particular tower.
C-band RFI Identification

Example of tower in optical visibility with Bric della Croce radar. During the 2015 in-field measurements with the Italian Ministry of Economic Development, comparing the SSID with the available information, these sources were found to interfere the Bric della Croce radar.
C-band RFI time series

Time series of \(I_h \) and \(I_v \) of the selected interference.
C-band RFI time series

1st row: I_v vs I_h and Q_v vs Q_h plots. Note that the data are distributed along the -45° slope line. The RFI source is slant polarized. Antennas slant polarization reduces interferences and increase performances in dense wireless environments.

2nd row: scattergram I vs Q for h-pol and v-pol. Unable to see any pattern.
X-band radar

Mobile radar used for research purposes. Currently located near Vercelli, 60km North-East of Turin
Operational frequency: 9.366GHz

RFIs started from 2014, continuously increasing.
Day-night pattern: RFIs received from approximately 6 a.m. to midnight
X-band RFI

Maximum of echoes received during a day (in colors) overlapped on the map.
The black dots represent the Base Station of a mobile operator transmitting the LTE 1.8GHz.
The lines represent the ray between the radar and the B.S.

Note that the radar range has been divided by 2.
X-band RFI – LTE signal

OFDM based signal. Basic unit in which data are transmitted is the LTE symbol with QAM, QPSK a CAZAC sequences as possible modulations. Total duration of the symbol is 71.3μs and 71.9μs for special symbols.

Down-link of the 1860-1880MHz LTE signal:
1.8732GHz x 5 = 9.366GHz which is the radar operating frequency

Maximum spurious level at X-band: -30dBm ETSI-TS 136 106 V10.0.0

This particular signal is not transmitted from midnight to 6 a.m. in the radar area.
X-band RFI – time series

Z (dBZ)

I_h (V)

km North

km East

pulse number

time (μs)
X-band RFI – time series

Scattergram I vs Q for h-pol and v-pol. Data distributed along a circle. Is this modulation comparable to LTE symbols?

I_v vs I_h and Q_v vs Q_h plots. Note that the data are distributed elliptically along the -45° slope line. Linearly polarized signal reflected by the environment surfaces during its path to the radar.

RFI duration: 71.7 μs
Reference Signals (RS) and Primary Synchronization Signals (P-SS) may be constructed from a **Constant Amplitude Zero AutoCorrelation** sequence named Zadoff-Chu sequence.

ZC properties:
1. Constant amplitude
2. Cyclic auto-correlation of each ZC sequence results in a single impulse at time offset zero.

1. RFI amplitude vary less than 5%;
2. RFI H-pol. autocorrelation is a single pulse at time lag zero.
DFW X-band radars network

Cleburne radar

Addison radar
DFW X-band radars network

DFW RFIs features:
- Few interferences received per day
- High time and spatial variability

What is the RFI source?

Could telecommunications affect CASA radars as Arpa X-band radar?

<table>
<thead>
<tr>
<th></th>
<th>f (MHz)</th>
<th>Uplink (MHz) (Mobile to Base)</th>
<th>Downlink (MHz) (Base to Mobile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>1800</td>
<td>1710.2 – 1784.8</td>
<td>1805.2 – 1879.8</td>
</tr>
<tr>
<td>North America</td>
<td>1900</td>
<td>1850.2 – 1909.8</td>
<td>1930.2 – 1989.8</td>
</tr>
</tbody>
</table>

No downlink communication allowed in the 1800MHz band.
Uplink of the LTE, user devices → low power.
Conclusions

C-band radar:
- Broadband internet access towers cause severe interferences
- I-Q data show high variability in the interference duty cycle
- SSID may help to identify the interference sources using the regional database of electromagnetic sources
- ITU standards compliance

X-band radar:
- Day-night pattern of the received interferences
- No in-band transmissions allowed → out-of-band or spurious emissions
- I-Q data analysis show high correlation due to artificial source. The polarization state (slant-pol) is widely used in mobile Base Stations.
- Likely due to 4G mobile communications
- In-field measurement to identify which are the interfering base stations.

First step of the enhanced RFI removal tool
Thank you!
Bibliography

Bibliography

• http://webgis.arpa.piemonte.it/campi_elettromagnetici_webapp/