

La classificazione dello Stato delle acque superficiali ai sensi della Direttiva 2000/60/CE

Antonietta Fiorenza

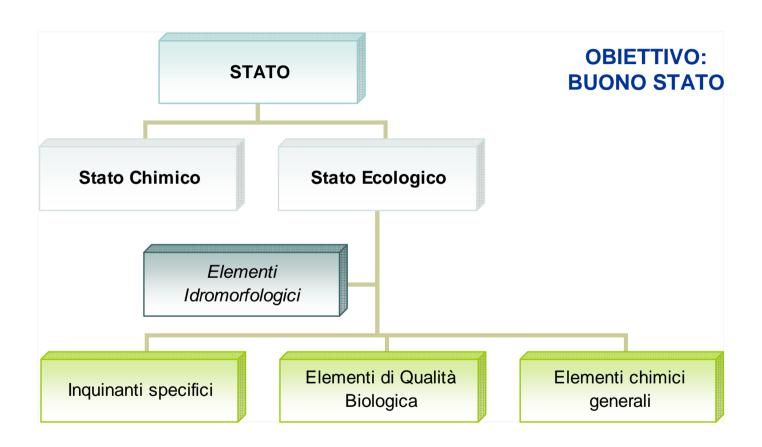
ARPA Piemonte – Struttura Specialistica Qualità delle Acque Torino, 7 aprile 2016

Riferimenti normativi

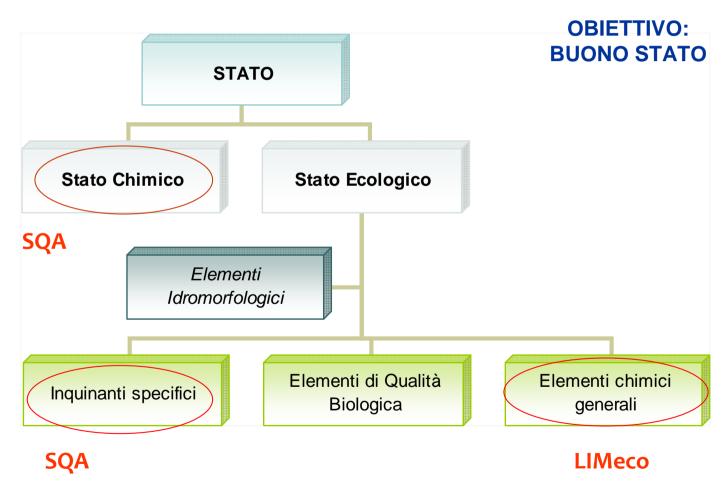
Direttiva 2000/60/CE (WFD) istituisce a livello europeo un quadro di riferimento per la definizione dei piani di gestione a scala di distretto idrografico finalizzati alla pianificazione delle attività di monitoraggio e delle misure necessarie per il raggiungimento degli obiettivi di qualità fissati a livello europeo per le diverse categorie di acque superficiali (fiumi e laghi)

D.Lgs. 152/2006 - Testo Unico Ambientale

Decreto 260/2010 - Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali


Direttiva 2013/39/UE - Standard di qualità ambientale nel settore della politica delle acque

Decreto Lgs. 172/2015 – attuazione della Direttiva 2013/39/UE che modifica la direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque


Classificazione dello stato di qualità Acque superficiali

La classificazione dello stato di qualità

SQA: Standard di Qualità Ambientale

La classificazione dello stato di qualità

STANDARD DI QUALITA' AMBIENTALE (SQA)

Concentrazione di un particolare inquinante o gruppo di inquinanti che non deve essere superata per tutelare la salute umana e l'ambiente

Come si calcola?

Confronto tra il valore medio aritmetico delle concentrazioni rilevate nei diversi campionamenti nell'arco di un anno e il valore del relativo SQA

STANDARD DI QUALITA' AMBIENTALE MASSIMA CONCENTRAZIONE AMMISSIBILE (SQA_CMA)

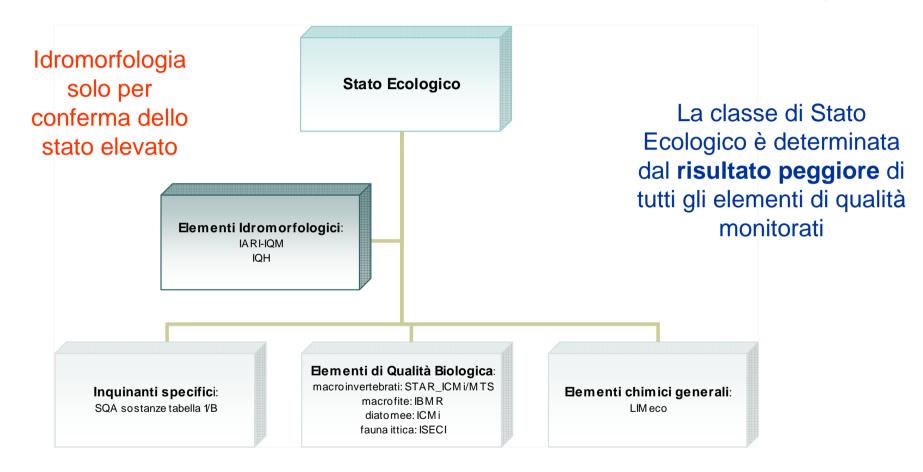
Rappresenta la concentrazione da non superare mai in ciascun sito di monitoraggio
Confronto tra il valore di concentrazione del singolo campionamento e il valore SQA_CMA

P HAP

La classificazione dello stato di qualità STATO CHIMICO

Elenco sostanze della tabella 1/A del Decreto 260/2010. L'elenco delle sostanze e degli SQA sono definiti a livello comunitario dalle Direttive 2008/105 e 39/2013 e valgono per tutti gli Stati Membri.

Previste 2 classi di Stato Chimico:


BUONO: media annua delle concentrazioni di tutte le sostanze < SQA e SQA_CMA

NON BUONO: media annua delle concentrazioni di almeno una sostanza > SQA e SQA_CMA

Classificazione dello stato di qualità Acque superficiali – Stato Ecologico

等且/等

La classificazione dello stato di qualità STATO ECOLOGICO

Inquinanti specifici: sostanze della tabella 1/B del Decreto 260/2010. L'elenco delle sostanze e gli SQA sono definiti a livello nazionale dai singoli Stati Membri. Alcuni pesticidi della tabella 1/B hanno specifici SQA, a tutti gli altri pesticidi è stato assegnato un SQA pari a 0.1 µg/L per le singole sostanze e 1.0 μg/L per la sommatoria (nei casi di Corpi Idrici destinati all'uso potabile 0.5 $\mu g/L$

SQA - Stato Ecologico: previste 3 classi per la verifica degli SQA:

ELEVATO: valori medi annuali di tutte le sostanze monitorate <SQA e assenza di riscontri positivi

BUONO: valori medi annuali di tutte le sostanze monitorate <SQA anche in presenza di eventuali riscontri positivi

SUFFICIENTE: valore medio annuale anche solo di una sostanza > SQA

Elementi chimici generali:

valutazione integrata di nutrienti e ossigeno (% sat) attraverso l'indice **LIMeco** Previste 5 classi per l'indice

LIMeco:

Elevato

Buono

Sufficiente

Scarso

Cattivo

Ai fini della classificazione le classi inferiori al Sufficiente vengono ricondotte a Sufficiente

Tab. 4.1.2/a - Soglie per l'assegnazione dei punteggi ai singoli parametri per ottenere il punteggio LIMeco

		Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
	Punteggio*	1	0,5	0,25	0,125	0
Parametro						
100-O ₂ % sat.		≤ 10	≤ 20	≤ 40	≤ 80	> 80
N-NH ₄ (mg/l)	* *	< 0,03	≤ 0,06	≤ 0,12	≤ 0,24	>0,24
N-NO ₃ (mg/l)	glie	< 0,6	≤ 1,2	≤ 2,4	≤4,8	>4,8
Fosforo totale	So	< 50	≤ 100	≤ 200	≤ 400	>400
$(\Box g/l)$						

Il LIMeco di ciascun campionamento viene derivato come media tra i punteggi attributi ai singoli parametri secondo le soglie di concentrazione indicate nella tabella, in base alla concentrazione osservata

Il valore del LIMeco annuale deriva dalla media dei valori dei singoli campionamenti

Tab. 4.1.2/b - Classificazione di qualità secondo i valori di LIMeco

Stato	LIMeco
Elevato*	≥ 0,66
Buono	≥ 0,50
Sufficiente	≥ 0,33
Scarso	≥ 0,17
Cattivo	< 0.17

Elementi di qualità biologica

Composizione e abbondanza dei macroinvertebrati bentonici

Composizione e abbondanza della flora acquatica – macrofite e diatomee

Composizione, abbondanza e struttura di età della fauna ittica

Macroinvertebrati: STAR_ICMi

Macrofite: IBMR

Diatomee: ICMi

Fauna ittica: ISECI

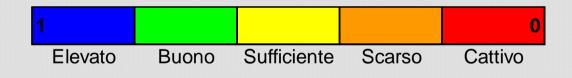
Previste 5 classi per tutti gli indici biologici

Elevato

Buono

Sufficiente

Scarso


Cattivo

Lo <u>Stato Ecologico delle comunità biologiche</u> deriva dal confronto tra il valore del parametro biologico osservato in un sito di monitoraggio e il valore dello stesso parametro corrispondente a **condizioni di riferimento** in assenza di disturbo antropico.

Tale confronto è espresso come Rapporto di Qualità Ecologica (RQE) che può variare tra 0 e 1.

Le **condizioni di riferimento** sono differenziate sulla base delle tipologie fluviali e quindi sono specifiche del "tipo" di corpo idrico monitorato

Come si calcola l'RQE? RQE= valore osservato/valore atteso

Campionamento macrofite calcolo indice IBMR

Ottengo il valore IBMR 12 in un campionamento e 11 nell'altro

Verifico a quale tipologia fluviale appartiene il mio Corpo Idrico (codice 04SS2N902PI)

Assegno il macrotipo

Verifico qual è il valore di riferimento per quel macrotipo: 14.5

Calcolo RQE: 11/14.5= 0.76 e 12/14.5=0.83

Medio i due valori: 0.79

Confronto RQE con i valori soglia delle 5 classi di stato per quel macrotipo per le macrofite

Macrotipo	RC	E/B	B/S	S/Sc	Sc/C
Aa	14.5	0.85	0.70	0.60	0.50

BUONO

Valore più basso della classe superiore

Come si calcola l'RQE?

RQE ANNUALE: per l'attribuzione della classe di stato ecologico alla comunità biologica, l'RQE deriva dalla MEDIA DEI VALORI RELATIVI AI CAMPIONAMENTI EFFETTUATI NELL'ANNO:

Macrofite previste 2 campagne

Diatomee previste 2 campagne

Macroinvertebrati previste 3 campagne

Fauna ittica prevista 1 campagne

Macrotipi e condizioni di riferimento sono riportati nel Decreto 260/2010 per tutte le componenti

Macrotipi differenziati per tutte le componenti biologiche

L'assegnazione al macrotipo è effettuata sula base della tipologia fluviale alla quale appartiene il CI che si desume dal codice del CI

04SS2N902PI

04 è l'idroecoregione

SS è l'origine (scorrimento superficiale)

2N indica la classe di taglia (piccolo)

04SS2N indica la tipologia e più CI possono avere questa codifica

902 è il codice univoco del CI

MACROINVERTEBRATI

Indice STAR_ICMI (STAR_intercalibration common metric index): non è un indice stressor specifico, valuta la qualità generale dei siti fluviali

Multimetrico composto da 6 metriche normalizzate e ponderate

Tolleranza: ASPT: intera comunità (associazione score a ogni famiglia; somma punteggi e divisione per numero famiglie)

Abbondanza/habitat: Log10(Sel_EPTD+1) somma abbondanze di una serie di famiglie

1-GOLD: 1-(abbondanza relativa di Gastropoda, Oligochaeta e Diptera)

Ricchezza/diversità: Numero totale di famiglie

Numero di famiglie di EPT (Ephemeroptera, Plecoptera e Trichoptera)

Indice di diversità di Shannon-Wiener

Tabella 4.1- Metriche che compongono lo STAR_ICMi e peso loro attribuito nel calcolo (da CNR-IRSA, $2007(^{11})$; 2008).

Nome della Metrica	Taxa considerati nella metrica	Peso	
ASPT	Average Score Per Taxon: intera comunità (livello di famiglia)	0.334	
Log ₁₀ (Sel_EPTD +1)	Log ₁₀ (somma abbondanze di Heptageniidae, Ephemeridae, Leptophlebiidae, Brachycentridae, Goeridae, Polycentropodidae, Limnephilidae, Odontoceridae, Dolichopodidae, Stratyomidae, Dixidae, Empididae, Athericidae e Nemouridae +1)	0.266	
1-GOLD	1 - (Abbondanza relativa di Gastropoda, Oligochaeta e Diptera)	0.067	0.333
Numero totale di Famiglie	Somma di tutte le famiglie presenti nel sito	0.167	
Numero di Famiglie di EPT	Somma delle famiglie di Ephemeroptera, Plecoptera e Trichoptera	0.083	0.333
Indice di diversità di Shannon- Wiener	$D_{s-w} = -\sum_{i=1}^{s} \left(\frac{n_i}{A}\right) \cdot \ln\left(\frac{n_i}{A}\right)$	0.083	

Peso maggiore alle metriche più robuste (intera comunità o minore variabilità naturale)

2. Lo STAR ICMi

Lo STAR_ICMi (Indice multimetrico STAR di Intercalibrazione) è un indice multimetrico composto da sei metriche (si veda Tabella 1b) che forniscono informazioni in merito ai principali aspetti che la Direttiva Quadro chiede di considerare per gli organismi macrobentonici. L'indice, che deriva dalla combinazione dei valori ottenuti per le sei metriche, opportunamente normalizzati e ponderati (Buffagni et al., 2007a), viene direttamente espresso in Rapporto di Qualità Ecologica (RQE) e assume valori tra 0 e 1+.

Il livello di identificazione tassonomica richiesto per il calcolo dell'indice STAR_ICMi è la Famiglia. Alcune delle metriche componenti necessitano, per poter essere calcolate correttamente, di dati relativi all'abbondanza delle singole famiglie di organismi bentonici. Lo STAR_ICMi può essere utilizzato per la classificazione in tutti i tipi fluviali e corpi idrici naturali italiani, nonché in corpi idrici artificiali e fortemente modificati.

Per quanto riguarda i grandi fiumi (ca > 150 km dalla sorgente), i fiumi temporanei ed alcuni tipi fluviali particolari (e.g. con origine da ghiacciaio), potranno essere proposti indici e sistemi di classificazione dedicati (Notiziari e Quaderni CNR-IRSA e/o Manuali ISPRA). Lo stesso vale per corpi idrici artificiali e fortemente modificati, per i quali si farà riferimento al massimo ed al buono potenziale ecologico.

3. Modalità di calcolo dello STAR_ICMi

Il calcolo dell'indice STAR_ICMi prevede 4 passaggi successivi elencati nel seguito:

- 1.calcolo dei valori grezzi delle sei metriche che compongono lo STAR_ICMi;
- 2.conversione dei valori di ciascuna metrica in RQE, dividendo il valore osservato (i.e. ottenuto per il campione in esame) per il valore mediano relativo ai campioni di riferimento propri del tipo fluviale analizzato;
- 3.calcolo della media ponderata dei valori di RQE delle sei metriche secondo i pesi forniti nella Tabella 1b:
- 4.normalizzazione del valore così ottenuto, effettuata dividendo il valore del campione in esame per il valore proprio dell'indice STAR_ICMi nelle condizioni di riferimento.

Estratto da notiziario IRSA 2008

7-2-2011

Supplemento ordinario n. 31/L alla GAZZETTA UFFICIALE

Serie generale - n. 30

APPENDICE

SEZIONE A

Tabella 1a. Elenco dei tipi fluviali presenti in Italia settentrionale e inclusi nel sistema MacrOper In molti casi, cioè quando siano disponibili valori di riferimento distinti per le aree di pool, riffle o riferiti ad una raccolta proporzionale generica di invertebrati bentonici, il tipo è riportato in più righe. Ciò è stato ritenuto utile per rendere più agevole associare i valori riportati in Tabella 1b ai tipi fluviali qui elencati. La prima colonna ("ord") rappresenta l'elemento di unione tra le tre tabelle e consente di associare un tipo fluviale in una determinata area regionale tra le tre tabelle.

ORD	Area reg.	Idroecoregione	Nome Idroecoregione	Classe di Distanza dalla Sorgente / Altro	cod. tipo	Macrotipo	note/sottotipo
N_1	01LO	01	Alpi Occidentali	25-75 km - medio	01553	A2	
N_2	01LO	01	Alpi Occidentali	25-75 km - medio	01553	A2	
N_3	01LO	01	Alpi Occidentali	< 10 km	01SR6	С	Ricchi di macrofite acquatiche. Escluse sorgenti in quota.
N_5	01PI	01	Alpi Occidentali	0-5 km - molto piccolo	01GH1	A2	
N_6	01PI	01	Alpi Occidentali	75-150 km - grande	01GH4	A2	
N_7	OlPI	01	Alpi Occidentali	75-150 km - grande	01GH4	A2	
N_9	01PI	01	Alpi Occidentali	0-5 km - molto piccolo	01551	A2	
N_11	01PI	01	Alpi Occidentali	5-25 km - piccolo	01552	A2	
N_12	OIPI	01	Alpi Occidentali	25-75 km - medio	01553	A2	
N_13	01PI	01	Alpi Occidentali	25-75 km - medio	01553	A2	
N_14	01PI	01	Alpi Occidentali	75-150 km - grande	01554	A2	
N_15	OIPI	01	Alpi Occidentali	75-150 km - grande	01554	A2	
N_17	01VA	01	Alpi Occidentali	0-5 km - molto piccolo	01GH1	A2	
N_19	01VA	01	Alpi Occidentali	5-25 km - piccolo	01GH2	A2	
N_20	01VA	01	Alpi Occidentali	25-75 km - medio	01GH3	A2	
N_21	01VA	01	Alpi Occidentali	25-75 km - medio	01GH3	A2	
N 23	01VA	01	Alpi Occidentali	0-5 km - molto piccolo	01551	A2	

Tabella 1b. Valori di riferimento per le metriche componenti e per lo STAR ICMi nei ripi fluviali dell'Italia settentrionale inclusi nel sittema MacrOper In thella vengono anche indicati i mini di classe I valori sono riportati, quando disponibili, in funzione di dove si effettui la raccolta dei macroimvettebrati per aree di pool, riffle o

ORD	Area regionale	roccolabite	ASPT	N.Fam	N EPT Fam	1-GOLD	Diversit di Shanco	log(SelEPTD+1)	STARJONS	Elevate/Baono	Borockufficiente	Safficiente/Scarso	SourseCative	Tipo dai disponibili (D, G,I, ND)
N_I	01LO	Riffle	6.974	18.00	10.00	0.792	1.662	2.583	1.009	0.95	0.71	0.48	0.24	D
N 2	OILO	Pool	6,953	23,00	12,00	0,687	1,802	2,602	1,002	0,95	0,71	0,48	0,24	D
N 3	OILO	Generico	5,953	31,00	12,00	0,594	1,720	2,545	0.982	0.96	0,72	0,48	0,24	1
N.5	0171	Generico	6,700	13,00	7,00	0.822	1,706	2,139	0.973	0.95	0,71	0.48	0.24	G
N_6	0191	Pool:	7,000	21,00	12,00	0.795	1.792	2,738	1,008	0.95	0.71	0.48	0.24	G
N_7	0179	Riffle	7,077	17,00	10,00	0.869	1.557	2.688	1,004	0.95	0.71	0.48	9.34	G
N_9	01P2	Generico	6.478	20,00	11.00	0.907	2,142	2.782	1.003	0,95	0.71	0.48	0.24	0
N 11	0171	Generico	6,834	19,00	11,00	0,261	1,783	2,682	200,1	0,95	0,71	0,48	0,24	D
N_12	0171	Pool	6,953	22,00	12,00	0.687	1,802	2,602	1,002	0,95	0,71	0.48	0,24	D
N_13	0171	Riffle	6,974	18,00	10,00	0.792	1,662	2,583	1.009	0,95	0,71	0,43	0,24	D
N_14	01PI	Pool	6.953	22.00	12,00	0.687	1.802	2,502	1,002	0.95	0.71	0.48	0.24	G
N_15	01PI	Riffle	6.974	18,00	10.00	0.792	1.662	2.583	1,009	0.95	0.71	0.48	0.24	G
N_17	01VA	Cientrico	6.700	13.00	7.60	0.822	1.706	2.130	6.936	0:95	0.71	0.48	0.24	G
N_19	01VA	Generico	6,700	13,00	7,00	0,822	1,706	2,139	0,973	0,95	0,71	0,48	0,24	G
N_20	01VA	Pool	7,000	21,00	12,00	0,795	1,792	2,738	1,008	0,95	0,71	0,48	0,24	D
N_21	01VA	Riffle	7,077	17,00	10.00	0.869	1.557	2,688	1,004	0.95	0.71	0.48	0,24	D
N_23	01VA	Generico	6,478	20,00	11,00	0.907	2,142	2,782	1,003	0.95	0.71	0.48	0,24	0
N_25	01VA	Generico	6,824	19,00	11,00	0.861	1.783	2.682	1,008	0.95	0.71	0.48	0,24	D
N_26	02FV	Generico	6,750	27,00	14,00	0,251	2,496	2,970	1,004	0,97	0,73	0,49	0,24	D
N_27	02FV	Generico	6,759	26,00	13,00	0,838	2,451	2,950	1,015	0,97	0,73	0.49	0,24	D
N_28	02FV	Riffle	6,759	26,00	13,00	0,838	2,451	2,950	1,015	0,97	0,73	0,49	0,24	G
N_29	02FV	Generico	6,417	17,00	8.00	0.851	2.094	1,857	0.991	0.97	0.73	0.49	0.24	D
N_30	02FV	Generico	5,953	31,00	12,00	0,894	1,720	2,545	0,982	0,96	0,72	0.48	0,24	D
N_31	02FV	Generico	5,953	31,00	12,00	0,894	1,720	2,545	0.982	0,96	0,72	0,48	0,24	D
N_32	02FV	Generico	5,953	31,00	12,00	0,894	1,720	2,545	0,982	0,96	0,72	0,48	0,24	D
N_33	02FV	Generico	5,953	31,00	12,00	0.894	1,720	2,545	0.982	0,96	0.72	0.48	0,24	1
N_34	02FV	Generico	5,953	31,00	12.00	0.894	1.720	2,545	0.982	0.96	0.72	0.48	0,24	1
N_35	02FV	Generico	5,953	31,00	12,00	0.894	1,720	2,545	0.982	0.96	0.72	0.48	0,24	1
N_37	02LO	Riffle	6,757	28,50	14,00	0,867	2,503	3,048	0,987	0,97	0,73	0,49	0,24	D
N_38	02LO	Generico	6,732	27,50	14,00	0,835	2,523	2,995	1,010	0,97	0,73	0,49	0,24	D
N_40	02LO	Riffle	6,757	28,50	14,00	0,867	2,503	3,048	0.987	0,97	0,73	0.49	0,24	D
N_41	02LO	Generico	6,732	27,50	14.00	0.835	2,523	2,995	1,010	0.97	0.73	0.49	0.24	D
N_42	02LO	Pool	6,720	26,00	14.00	0.790	2.495	2,926	1,015	0.97	0.73	0.49	0.24	G
N_43	02LO	Riffle	6,757	28,50	14,00	0.867	2,503	3,048	0.987	0.97	0,73	0,49	0,24	0
N_44	02LO	Generico	6,732	27,50	14,00	0,835	2,523	2,995	1,010	0,97	0,73	0,49	0,24	G
N_43	02LO	Generico	5,953	31,00	12,00	0,894	1,720	2,545	0,982	0,96	0,72	0,48	0,24	D
N_46	02LO	Generico	5,953	31,00	12,00	0.894	1.720	2,545	0.982	0,96	0.72	0.48	0.24	1
N_47	02LO	Generico	5,953	31,00	12,00	0.894	1,720	2,545	0.982	0.96	0,72	0.48	0,24	I

Supplemento ordinario n. 31/L alla GAZZETTA UFFICIALE

A.4.1.1 Criteri tecnici per la classificazione sulla base degli elementi di qualità biologica

Macroinverteirati
Il sistema di classificazione per i macroinvertebrati, denominato MacrOper, è basato sul calcolo dell'indice denominato Indice multimetrico STAR di Intercalibrazione (STAR (ICM), che consente di derivare una classe di qualità per gli organismi macrobentonici per la definizione dello Stato

Ecologico.

Lo STAR ICMi è applicabile anche ai corsi d'acqua artificiali e fortemente modificati.

Specifiche per i fiumi molto grandi e/o non accessibili²

Specifiche per i fluum molte grandi e/o non accessibili".

La classificazione dei fluum molte grandi e/o non accessibili, cioè "non guadabili", ovvero di quei tipi fluviali per i quali non sia possibile effettuare in modo affidabile un campionamento multilabilist proporzionale, si ottiene dalla combinazione dei valori RQE ottenuti per gli indici STAR (CMR eMTS (Maryly) Total Score), mediante il calcolo della media ponderata.

Limit di classe e classificazione
În tab. 4.1.6 sono riportati i stodi di RQE relativi si limiti di classe validi sia per lo STAR_ICMi
sa per la media sponderata tra STAR_ICMi e MTS, nel caso di fiumi molto grandi e\u00f3o non
accessibili, per i maccopit fituviali. L'attribuzione a una delle cinque classi di qualità per il uto un
esame e du effettanta stulla base del valore medici dei votori dell'indice un'intazzo relativi alle diverse stagioni di campionamento.

Macrotipo fluviale		Limiti d	li classe	
	Elevato/Buono	Buono/Sufficiente	Sufficiente/Scarso	Scarso/Cattivo
A1	0,97	0,73	0.49	0,24
A2	0,95	0,71	0,48	0,24
С	0,96	0,72	0,48	0,24
M1	0,97	0,72	0,48	0,24
M2-M3-M4	0,94	0,70	0,47	0,24
M5	0.97	0.73	0.49	0.24

La sezione A dell'Appendice al presente Allegato riporta i valori di riferimento tipo-specifici ad oggi diponibili, per le sei metriche che compongono lo STAR_ICMi e per il valore dell'indice stesso, nonché i valori per l'indice MTS.

² Per i fimmi motto grandi e/o non accessibili il metodo di campionamento richiede l'utilizzo di substrati artificiali a lamelle, sulla boste delle specifiche tecuche consume nelle pubblicazioni Buffigni A, Moruzzi E, Beffiore C, Bordin F, Cambagah M, Erbs S, Golbata I, Pagnotta R, 2007. Mottoriarrio di enterrito 2000 dello (WFD)-parte D. Mesodo di campionamento per i fiumi non guadribili. IPSA-CNR Notiziario dei metodi nanlirici, Marzo 2007 (1), 69-93.

Ai fini della classificazione, è indispensabile la selezione del mesohabitat di riferimento per il campionamento:

✓in operativo (riffle o pool o generico se non riconoscibile alternanza) che dipende dai macrotipi

✓in sorveglianza sia riffle che pool.

Modalità di classificazione piuttosto articolate in relazione alla presenza dei mesohabitat di riferimento

MACROFITE

Indice IBMR (Indice Biologique Macrofitique en Rivière): indice per la valutazione dello stato trofico

L'indice è correlabile ed è influenzato dalla concentrazione di nutrienti e di fattori quali luminosità e velocità della corrente

Il calcolo si basa su una lista di taxa indicatori a ciascuno dei quali è associato un valore di sensibilità/tolleranza ad alti livelli di trofia

L'abbondanza è valutata attraverso l'attribuzione di un coefficiente di copertura

IBMR =
$$\sum_{i=1}^{n} [Ei \ Ki \ Ci] / \sum_{i=1}^{n} [Ei \ Ki]$$

Il calcolo dell'RQE consente di valutare di fatto lo scostamento rispetto allo stato trofico atteso

copertura reale		significato secondo IBMR
<0,1	1	Solo presenza
$0.1 \le \text{cop} < 1$	2	Copertura scarsa
$1 \le \text{cop} < 10$	3	Copertura discreta
$10 \le \text{cop} < 50$	4	Copertura buona
cop ≥ 50	5	Copertura alta

Tabella 3. Tabella di conversione per l'attribuzione dei coefficienti di copertura a partire da valori di copertura

Alle specie a cui, nell'ambito del rilievo stazionale, è stato attribuito un valore di copertura + (ovvero, quelle per le quali è stata rilevata la sola presenza) dovrà essere associato il coefficiente di copertura 1, in accordo con il significato attribuito al coefficiente di copertura 1 dallo stesso IBMR.

Il calcolo dell'IBMR per la stazione di rilevamento si effettua attraverso la formula

IBMR =
$$\sum_{i=1}^{n} [E_i K_i C_i] / \sum_{i=1}^{n} [E_i K_i]$$

dove:

E_i= coefficiente di stenoecia

Ki= coefficiente di copertura

Ci= coefficiente di sensibilità

n = numero dei *taxa* indicatori

L'elenco dei taxa indicatori, comprendente organismi autotrofi, alghe, licheni, briofite, pteridofite e angiosperme è composta da 210 taxa (2 taxa fungini, 44 taxa algali, 2 specie di licheni, 15 specie di epatiche, 37 specie di muschi, 3 felci e 107 specie di angiosperme), a ciascuno di essi è associato un coefficiente di sensibilità Csi e un coefficiente di stenoecia Ei. L'elenco dei taxa indicatori secondo l'IBMR (con rispettivi valori Csi e Ei) è riportato in Allegato1.

Il coefficiente di copertura Ki è attribuito a ciascun taxa secondo il procedimento sopra descritto e utilizzando i coefficienti di copertura riportati in Tabella 3.

Estratto da RT/2009/23/ENEA

Macrofite

L'indice da applicare per la valutazione dello stato ecologico, utilizzando le comunità macrofitiche, è l'indice denominato "Indice Biologique Macrophyitique en Rivière" IBMR. L'IBMR è un indice finalizzato alla valutazione dello stato trofico inteso in termini di intensità di produzione primaria. Allo stato attuale questo indice non trova applicazione per i corsi d'acqua temporanei mediterranei.

Limiti di classe e classificazione

Nella tabella 4.1.1/e si riportano i valori di RQE_IBMR relativi ai limiti di classe differenziati per Area geografica.

Tab. 4.1.1/e - Valori di RQE_IBMR relativi ai limiti tra le classi Elevata, Buona e Sufficiente

		Limiti	di Classe	
Area geografica	Elevato/Buono	Buono/Sufficiente	Sufficiente/Scarso	Scarso/Cattivo
Alpina	0,85	0,70	0,60	0,50
Centrale	0,90	0,80	0,65	0,50
Mediterranea	0,90	0,80	0,65	0,50

In tabella 4.1.1/f sono riportati i valori di riferimento da utilizzare per il calcolo di RQE_IBMR per i macrotipi definiti in tabella 4.1/b.

Tab. 4.1.1/f - Valori di riferimento dell'IBMR per i macrotipi fluviali

Area geografica	Macrotipi	Valore di riferimento
Alpina	Aa	14,5
	Ab	14
Centrale	Ca	12,5
	Съ	11,5
	Cc	10,5
Mediterranea	Ma	12,5
	Mb	10,5
	Mc	10
	Md	10,5
	Me	10
	Mf	11,5
	Mg	11

DIATOMEE

Indice ICMi (intercalibration common metric index): indice multimetrico deriva dall'Indice di Sensibilità agli Inquinanti IPS e dall'indice trofico TI

Entrambi gli indici prevedono l'attribuzione di un valore di sensibilità all'inquinamento

IPS: tiene conto principalmente della sensibilità delle specie all'inquinamento organico

TI: tiene conto principalmente della sensibilità delle specie allo stato trofico ed è sensibile al carico di nutrienti di origine naturale

ICMi: deriva dalla media aritmetica degli RQE dei due indici IPS e TI

risultati del primo anno di monitoraggio sul reticolo idrografco Nazionale.

L'Intercalibration Common Metric Index (ICMi) è stato messo a punto durante il processo di intercalibrazione del GIG dell'area geografica Centrale/Baltica per poter confrontare i risultati provenienti dai diversi metodi utilizzati dagli Stati Membri.

L'ICMi deriva dall'Indice di Sensibilità agli Inquinanti IPS (CEMAGREF, 1982) e l'Indice Trofico TI (Rott *et al.*, 1999).

Entrambi gli indici prevedono l'identificazione a livello di specie, ad ognuna delle quali viene attribuito un valore di sensibilità (affinità/tolleranza) all'inquinamento e un valore di affidabilità come indicatore.

Nel calcolo dell'IPS si tiene conto principalmente della sensibilità delle specie all'inquinamento organico e di conseguenza è indicativo di alti livelli di trofia e di inquinamento organico. Nel calcolo del TI si tiene conto principalmente della sensibilità delle specie all'inquinamento trofico, e questo è altamente correlato con bassi livelli di trofia e di inquinamento organico; è inoltre sensibile al carico di nutrienti di origine naturale (Kelly *et al.*, 2007).

L'ICMi è dunque un indice multi metrico composto dal TI e dall'IPS; successivamente è stato scelto per gli Esercizi di Intercalibrazione dei GIG Alpino e Mediterraneo.

L'ICMi è dato dalla media aritmetica degli RQE dei due indici IPS e TI.

$$ICMi = \frac{(RQE_IPS + RQE_TI)}{2}$$

Il calcolo degli RQE dei due Indici si ottiene come di seguito riportato:

IPS:

$$RQE_IPS = \frac{Valore_osservato}{Valore\ riferimento}$$

TI:

$$RQE_TI = \frac{(4 - Valore_osservato)}{(4 - Valore_riferimento)}$$

Rapporti ISTISAN 09/19

Per il TI, trattandosi di un indice trofico i cui valore aumenta al crescere del livello di inquinamento, bisogna apportare la conversione di cui alla formula sopra riportata: RQE_TI (dove 4 è il valore massimo che può raggiungere il TI).

I valori degli indici, intesi come valore osservato ed atteso, vengono calcolati attraverso la formula di Zelinka e Marvan (1961):

$$IPS_{5} = \frac{\sum_{j=1}^{n} a_{j} \cdot I_{j} \cdot S_{j}}{\sum_{j=1}^{n} a_{j} \cdot I_{j}}$$

I valori dei coefficienti delle singole specie sono riportati in Appendice.

I valori di "S" variano da 5 (per una specie molto sensibile) a 1 (per una specie tollerante). I valori di affidabilità come indicatore "I" variano da 1 (indicatore sufficiente) a 3 (indicatore ottimo).

L'indice IPS₅ deve successivamente essere convertito in classe 20 applicando la seguente formula:

$$IPS = (4,75x - 3,75)$$

dove $x = IPS_5$.

$$TI = \frac{\sum_{j=1}^{n} a_j \cdot G_j \cdot TW_j}{\sum_{j=1}^{n} a_j \cdot G_j}$$

I valori dei coefficienti delle singole specie sono riportati in Appendice.

I valori di "TW", variano da 1 (per una specie sensibile) a 4 (per una specie tollerante) con il crescere della tolleranza delle specie al carico di nutrienti, i valori di "G", della affidabilità della specie come indicatore variano da 1(indicatore sufficiente) a 5 (indicatore ottimo).

7-2-2011

Supplemento ordinario n. 31/L alla GAZZETTA UFFICIALE

Serie generale - n. 30

Diatomee

L'indice multimetrico da applicare per la valutazione dello stato ecologico, utilizzando le comunità diatomiche, è l'indice denominato Indice Multimetrico di Intercalibrazione (ICMi).

L' ICMi si basa sull'Indice di Sensibilità agli Inquinanti IPS e sull'Indice Trofico TI.

Limiti di classe e classificazione

In tabella 4.1.1/c sono riportati i valori di RQE relativi ai limiti di classe dell'ICMi, distinti nei macrotipi fluviali indicati nella tabella 4.1/a

Tab. 4.1.1/c Limiti di classe fra gli stati per i diversi macrotipi fluviali.

Macrotipi	Limiti di classe						
масгопрі	Elevato/Buono	Buono/Sufficiente	Sufficiente/Scarso	Scarso/Cattivo			
Al	0,87	0,70	0,60	0,30			
A2	0,85	0,64	0,54	0,27			
С	0,84	0,65	0,55	0,26			
M1-M2-M3-M4	0,80	0,61	0,51	0,25			
M5	0,88	0,65	0,55	0,26			

I valori riportati in Tab. 4.1.1/c corrispondono al valore più basso della classe superiore.

Nella tabella. 4.1.1/d vengono riportati i valori di riferimento degli indici IPS e TI da utilizzare per il calcolo dei rispettivi RQE:

Tab. 4.1.1/d - Valori di riferimento degli indici IPS e II per i macrotipi fluviali.

Macrotipo	Valori di ri	ferimento
fluviale	IPS	TI
A1	18,4	1,7
A2	19,6	1,2
С	16,7	2,4
M1	17,15	1,2
M2	14,8	2,8
M3	16,8	2,8
M4	17,8	1,7
M5	16,9	2,0

\$ 14

La classificazione dello stato di qualità STATO ECOLOGICO

FAUNA ITTICA

Indice ISECI: l'analisi della comunità tiene conto dei seguenti criteri:

- la naturalità della comunità, intesa come la ricchezza determinata dalla presenza di specie indigene attese in relazione al quadro zoogeografico ed ecologico;
- 2) la condizione biologica delle popolazioni indigene, in termini di capacità di autoriprodursi ed avere normali dinamiche ecologico-evolutive.
- 3) l'indice tiene conto anche di altri tre elementi di valutazione aggiuntivi, quali il disturbo dovuto alla presenza di specie aliene, la presenza di specie endemiche e l'eventuale presenza di ibridi.

等基度

La classificazione dello stato di qualità STATO ECOLOGICO

Tab. I. Indicatori	principali che compongono	TISECTA	neso loro attribuito	nel calcolo dei	valori dell'indice
THOU THOUGH SHOUL	principality one composizons	0.1 10101110	Dego toro autrouno	THE LEWIS COUNTY AREA	valou dea monce.

Indicatori principali	Descrizione sintetica e taxa considerati	Peso
Presenza di specie indigene	confronto tra specie indigene presenti e comunità ittica attesa*	0,3
Condizione biologica delle popolazioni	per ogni specie indigena presente: struttura della popolazione in classi di età e consistenza demografica	0.3
Presenza di ibridi	eventualità di ibridi nei generi Salmo, Thymallus, Esox, Barbus, Rutilus	0.1
Presenza di specie aliene	eventuali specie aliene presenti con grado di nocività: - elevato (lista 1)** - medio (lista 2)** - moderato (lista 3)**	0,2
Presenza di specie endemiche	confronto tra specie endemiche presenti e lista specie endemiche attese*	0.1

Abbondanza e struttura della popolazione

La presenza di specie aliene e di ibridi è un fattore di scadimento dell'indice

La presenza di endemismi invece è un fattore di pregio

ISECI: Metodo non ancora intercalibrato

Aspetti tecnici applicativi ancora in discussione e da puntualizzare

Ipotesi di revisione del metodo

Fino ad oggi il metodo ha evidenziato problemi di funzionamento in alcuni contesti per cui di fatto non è stato applicato nella classificazione del primo sessennio di monitoraggio 2009-2014

La clas

La classificazione dello stato di qualità STATO ECOLOGICO

Le metriche di classificazione dello stato basate sulle comunità biologiche rispondono pienamente alle richieste della Direttiva?

Alterazione delle comunità in termini di composizione e abbondanza rispetto alle condizioni attese in assenza di impatti antropici

Stato Ecologico: aggregazione degli indici su base annuale - Sorveglianza

				Giudizio peggiore	da Elementi Biolog	ici	
			Elevato	Виопо	Sufficiente	Scarso	Cattivo
	ostegno	Elevato	Elevato ⁽¹⁾	Buono	Sufficiente	Scarso	Cattivo
LIN	Elementi fisico-chin <mark>ch</mark> i a sostegno	Виопо	Buono	Buono	Sufficiente	Scarso	Cattivo
	Element	Sufficiente, Scarso e Cattivo	Sufficiente	Sufficiente	Sufficiente	Scarso	Cattivo

SQA per ecologico

			Giudizi	o della fase I		
		Elevato	Buono	Sufficiente	Scarso	Cattivo
quinanti specifici)	Elevato	Elevato	Buono	Sufficiente	Scarso	Cattivo
sostegno (altri inc	Виопо	Buono	Buono	Sufficiente	Scarso	Cattivo
Elementi chimici a sostegno (altri inquinanti specifici)	Sufficiente	Sufficiente	Sufficiente	Sufficiente	Scarso	Cattivo

La classi

La classificazione dello stato di qualità STATO ECOLOGICO

Elementi di qualità idromorfologica

- Alterazione del regime delle portate: Indice IARI
- Alterazioni morfologiche dell'alveo, delle sponde, delle rive: Indice IQM

CLASSIFICAZIONE DELLO STATO IDROMORFOLOGICO DEI CORPI IDRICI FLUVIALI		STATO MORFOLOGICO Indice IQM		
	ELEVATO	NON ELEVATO		
	ELEVATO	ELEVATO	NON ELEVATO	
STATO REGIME IDROLOGICO Indice IARI	BUONO	ELEVATO	NON ELEVATO	
	NON BUONO	NON ELEVATO	NON ELEVATO	

Stato Ecologico: aggregazione degli indici su base annuale o triennale (operativo)

Corsi d'acqua - Stato Ecologico

I passaggi chiave per la classificazione sono:

- il calcolo delle metriche previste per tutti gli Elementi di Qualità su base annuale a livello di stazione
- l'aggregazione dei risultati annuali a livello di CI, secondo le modalità previste, nel caso di più stazioni in un CI
- il calcolo degli indici su base triennale nel caso di monitoraggio Operativo.

Passaggi	LIMeco	SQA	Singola metrica biologica	idromorfologia
indice annuale per stazione	media dei campionamenti	media dei campionamenti	media dei campionamenti	
Indice annuale per CI	media ponderata dei risultati singola stazione	valore peggiore dei risultati medi annuali singola stazione	media ponderata dei risultati singola stazione	classe derivante dall'unica indagine prevista per Cl
indice triennale per CI	media dei valori dei tre anni riferiti al CI	valore medio peggiore nei tre anni riferito al CI	media dei valori annuali riferiti al Cl	classe derivante dall'unica indagine prevista per Cl

Codice_CI	IBMR	ICMi	StarlCMi	LimEco	IARI	IQM	IIDRAIM	SQA ecologico		Stato Chimico	Stato
01GH1N345PI			Elevato	Elevato		Buono		Buono	Buono	Buono	Buono
01GH1N719PI			Elevato	Elevato				Buono	Buono	Buono	Buono
01GH4N166PI			Buono	Elevato	Buono	Non elevate	Non Elevato	Buono	Buono	Buono	Buono
06SS3D108PI	Scarso	Sufficiente	Sufficiente	Sufficiente	Buono	Non elevate	Non Elevato	Sufficiente	Scarso	Non Buono	Non Buono

IBMR	ICMi	LimEco	StarICMi	SQA ecologico	IDRAIM	IARI	IQM	Stato ecologico
Elevato	Elevato	Elevato	Elevato	Elevato	Elevato	Elevato	Elevato	Elevato
Elevato	Elevato	Elevato	Elevato	Elevato	-	-	-	Buono

Lo Stato dei Corpi Idrici non monitorati

E per i corpi idrici non monitorati?

E' previsto il raggruppamento: i corpi idrici vengono raggruppati in insiemi omogenei in base alla tipologia fluviale e alla confrontabilità dei risultati dell'analisi delle pressioni

Ogni gruppo è associato ad uno o più corpi idrici monitorati

Ai corpi idrici non monitorati è assegnata la classe di Stato, Stato Chimico e Stato Ecologico di uno dei corpi idrici monitorati facenti parte del raggruppamento

Nel caso dei corpi idrici raggruppati sono attribuite solo 2 classi di Stato Ecologico: Buono o Sufficiente (ad attestare il raggiungimento o il mancato raggiungimento dell'obiettivo di qualità); inoltre, non sono utilizzabili i dati relativi alle diverse metriche di classificazione (IBMR, LIMeco, STARICMi....)

RAGGRUPPAMENTO: non genera nessuna modifica al corpo idrico. E' solo una modalità che consente di estendere un dato di stato misurato a un corpo idrico non monitorato

Valutazione dei risultati: livello di confidenza della classificazione

L'attribuzione della classe di Stato deriva dall'aggregazione di diverse metriche di valutazione; il risultato finale è quindi determinato dall'affidabilità complessiva del dato prodotto e dalla variabilità degli indici sintetici nel tempo.

Due fattori determinano il livello di confidenza: robustezza e stabilità.

La **robustezza** è riferita al dato prodotto e deriva dalla conformità alle richieste normative del programma di monitoraggio: numero di campionamenti minimi sia per gli EQB sia per gli elementi chimici coerente con quelle previste dal Decreto 260/2010; valore dell'LCL adeguato per la verifica degli SQA; EQ monitorati coerente con quanto previsto dalla tipologia di monitoraggio.

La **stabilità** è attribuita ai risultati degli indici. La stabilità "misura" la variabilità dell'indice sulla base di: valori borderline degli indici (RQE, SQA...) rispetto ai valori soglia delle 5 classi di stato; variabilità SQA e LIMeco nell'arco dei 3 anni per le reti operative. Un indice è considerato stabile se assume la stessa classe di stato in tutti e 3 gli anni di monitoraggio, viceversa è considerato variabile.

L'LC deriva dall'integrazione di Stabilità e Robustezza. Possono essere distinti 3 Livelli di Confidenza: Alto, Medio, Basso. L'LC "alto" corrisponde al livello giore di affidabilità nell'attribuzione della classe di stato.

Valutazione dei risultati: livello di confidenza della classificazione

Elementi di	Livello di Confidenza - Robustezza				
Qualità	alto	basso			
Macroinvertebrati	n. liste faunistiche 3/6	n. liste faunistiche < 3/5			
Diatomee	n. liste floristiche 2	n. liste floristiche 1			
Macrofite	n. liste floristiche 2	n. liste floristiche 1			
EQB indagati/pre visti	completo	non completo			
Elementi Chimici Generali	n. campionamenti >= 75% previsti	n. campionamenti tra 30% e 75% previsti			
Inquinanti specifici	n. campionamenti >= 75% previsti	n. campionamenti tra 30% e 75% previsti			
Sostanze prioritarie	n. campionamenti >= 75% previsti	n. campionamenti tra 30% e 75% previsti			
LCL rispetto al valore SQA	adeguato	non adeguato			

Metriche di classificazione	Livello di Confidenza – Stabilita'			
Wether di classificazione	alto	basso		
STAR_ICMi	non borderline	borderline		
ICMi	non borderline	borderline		
IBMR	non borderline	borderline		
LIMeco	non borderline	borderline		
LIMeco	stabile	variabile		
SQA_Inquinanti specifici	non borderline	borderline		
SQA_Inquinanti specifici	stabile	variabile		
SQA_ Sostanze prioritarie	non borderline	borderline		
SQA_ Sostanze prioritarie	stabile	variabile		

Livello	Stabilità		
Confiden	za —	alto	basso
Robustezza	alto	alto	medio
	basso	medio	basso

I dati di stato

Per i corpi idrici oggetto di monitoraggio sono disponibili i seguenti dati di stato:

- Dati di dettaglio relativi ai singoli campionamenti sia chimici che biologici
- Indici previsti per la classificazione dello stato calcolati su base annuale e aggregati su base triennale nei casi previsti

I dati relativi alla classificazione prevedono:

- I dati dei singoli indici annuali
- La classificazione dello stato ecologico
- La classificazione dello stato chimico
- La classificazione dello stato

Classificazione su base annuale o triennale a seconda che si tratti di sorveglianza o operativo

CLASSIFICAZIONE

Stato: 2 classi buono/non buono

Stato Chimico: 2 classi buono /non buono;

Stato Ecologico: 5 classi da elevato a cattivo

Le singole metriche vengono calcolate annualmente, ma non hanno valore di classificazione nel monitoraggio operativo

Analisi delle pressioni: individuazione di tutte le pressioni significative sul Corpo Idrico, cioè in grado di pregiudicare il raggiungimento degli obiettivi ambientali

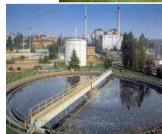
Tipologia di pressione

- 1-1 Puntuale Scarichi Urbani
- 1-3 Puntuale Scarichi Industriali IPPC
- 1-4 Puntuale Scarichi Industriali non-IPPC
- 1-5 Puntuale Siti Contaminati
- 1-6 Puntuale Discariche
- 2-1 Diffusa Dilavamento del suolo- uso Urbano
- 2-2 Diffusa Dilavamento del suolo- uso agricolo
- 2-4 Diffusa Traffico
- 3-1 Prelievi-Irrigui
- 3-2 Prelievi-uso potabile
- 3-3 Prelievi-Industriale
- 3-4 Prelievi-Raffreddamento
- 3-5 Prelievi-Piscicoltura
- 3-6-1 Prelievi-Idroelettrico
- 4-1 Alterazione fisica dell'alveo
- 4-2 Dighe/barriere/chiuse
- 4-5-1 Alterazioni della zona riparia
- 5-1 Introduzione di specie e malattie

Risultati sessennio 2009-2014

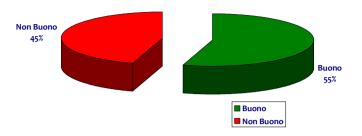
Alterazioni morfologiche zona riparia 64%

Dilavamento agricolo 19% 32% se escludiamo le Idroecoregioni alpine

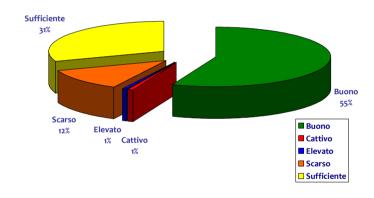


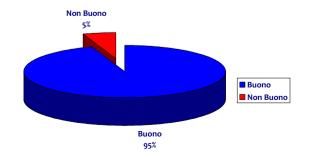
Introduzione di specie 19%

Prelievi 38%, il 57% nelle Idroecoregioni alpine



Scarichi urbani 31%


Nota: % di Corpi Idrici con pressione significativa sul totale dei corpi idrici


Stato

Stato Ecologico

Stato Chimico

Risultati sessennio 2009-2014

Stato Ecologico inferiore a Buono: in circa 80% dei CI è determinato da uno o più elementi di qualità biologica (circa il 50% Macrobenthos) e nel 20% dagli elementi chimici (LIMeco o SQA)

Il superamento degli SQA è determinato nello Stato Ecologico prevalentemente da pesticidi e marginalmente da Cromo e nello Stato Chimico da metalli quali Mercurio, Cadmio, Piombo e Nichel (di probabile origine naturale in alcuni contesti territoriali)

A livello europeo in generale le metriche di valutazione delle comunità biologiche sono risultate NON adeguatamente sensibili nel rilevare gli impatti derivanti da alterazioni idromorfologiche. (A Blueprint to Safeguard Europe's Water Resources; 3° European Water Conference-background document annex A)

GRAZIE PER L'ATTENZIONE!

